ELIZADE UNIVERSITY, ILARA-MOKIN, NIGERIA FACULTY: BASIC & APPLIED SCIENCES DEPARTMENT: BIOLOGICAL SCIENCES ## FIRST SEMESTER EXAMINATION 2020/2021 ACADEMIC SESSION | COURSE CODE: EMT 509 | | |---|--| | COURSE TITLE: STRUCTURAL ELUCIDATION OF ORGANIC POLLUT. | ANTS | | | 1124 | | COURSE UNIT(S): 3 UNITS | The second secon | | DURATION: 3 HOURS | HOD's SIGNATURE | | | | | | | | NAME/ | | | MAT. Neg. | cerrences executations. | | INSTRUCTIONS: | | ANSWER ANY FOUR QUENTIONS USE THE TABLE OF VALUES GIVEN WHERE NECESSARY. - 1. Given that (A) is an organic compound with molecular formula C₄H₈O₂. Use the information provided to elucidate its structure. - (a) Determine its Double Bond Equivalent (DBE) and hence, comment on its structure if it has no significant absorption of Ultraviolet-Visible (UV) radiation. - (b) Infra-red (IR) absorption at: 3500 cm⁻¹, 2980 cm⁻¹ and 1725 cm⁻¹. - (c) Nuclear Magnetic Resonance (NMR) data: δ values 2.20, 3H, s; 2.40, J 5 Hz, 2H, t; 4.60 removed by D₂O shake, 1H, s - (d) (A) reacts to form a compound (M) with the following information: IR: Band at 3500 cm⁻¹ disappears and band at 1725 cm⁻¹ moves to 1690 cm⁻¹. UV: Compound now has a strong absorption at 215 nm. NMR: Signals at 2.4°), 3.60 and 4.60 disappear and δ 5.0, 3 H appears. IR: Band at 1640 cm⁻¹ appears. Mass Spectroscopy (MS) data: m/z = 43; m/z = 63 and m/z = 31. (20 Marks) - 2. a. An Ultra-violet light has a wavelength of 200 nm. Calculate the: - (i) amount of energy absorbed by one molecule that interacts with this light - (ii) frequency of the light $$(c = 3x10^8 \text{ m.s}^{-1}; h = 6.6x1(^{-34} \text{ J s})$$ - b. Explain the following terms: (i) Chromophore (ii) Blue shift - c. List two factors that influence the relative energy of absorption of UV radiation by a molecule. - d. Given molecules (B), (C) and (D), predict λ_{max} for $\pi \rightarrow \pi^*$ absorption band in the UV spectrum. - 3. a. Write on chemical warfere and coevolutionary arms race. - b. State the number of signals that will be observed in the ¹H NMR of the following: - (i) CH₃CH₂CCH₂CH₃ (ii) C(CH₃)₄ (iii) CH₃CHCH₂Br (iv) (CH₃)₂C=CH₂ - c. An NMR signal is observed at 100 Hz down field from TMS using a 60 MHz instrument. What is the position of the signal in δ value? - d. Compound (E) has molecular formula $C_3H_6O_2$. NMR spectrum of (E) has the following: NMR δ 2.00, singlet; δ 3.75, singlet. Area ratio 14.2:13.9. Deduce its structure. (15 Marks) - 4. a. Highlight in details, the steps involved in classical method of elucidating the structure of organic compound. - b. State four factors that affect absorption frequency in Infra-red (IR) spectroscopy. - c. How can you differentiate between the following pair of compounds by means of IR spectroscopy? - (i) PhCOCH₃ and PhCOOCH₃ (ii) CH₃CH₂CONHCH₃ and CH₃COCH₂NHCH₃ (iii) PhCOOCH3 and CH3COOPh (15 Marks) - a. (i) Explain the basic principle of a mass spectrometer. - (ii) State four parts of a mass spectrometer. - b. (i) Write the structure of 2-methylpentane. - (ii) Give a simplified mass spectrum of 2-methylpentane showing how the chain can break in several places and the most abundant ion. (Hint: Show Relative Abundance for only the base peak) (15 Marks) - 6. a. Discuss organic pollutants under the following headings: - (i) Definition - (ii) Name of organic pollutant of plant origin and another of animal origin and their sources. - (iii) The mode of action and structure of each of the pollutants named in 1a (ii) above. - b. Give five essential features of spectrometers used for UV/VIS, IF, and NMR techniques. - c. List two types of radiation absorbed by a molecule. For each, state the effect of the absorption and the information obtainable. - d. A solution containing 1.0 mol L⁻¹ of the solute gave an absorbance of 1.5 when measured in a 1 cm cell. Calculate its molar absorptivity (ε).